已知抛物线y²=2px(p>0)与双曲线x²-y²=1的一个交点为M,双曲线的两个焦点分别为F1,F2,且|

已知抛物线y²=2px(p>0)与双曲线x²-y²=1的一个交点为M,双曲线的两个焦点分别为F1,F2,且|
求抛物线的方程
且|MF1|•|MF2|=5/4
其他人气:730 ℃时间:2019-09-17 20:13:37
优质解答
设M横坐标为X 横坐标为Y
因为已知双曲线x²-y²=1,所以可得双曲线的准线方程为x=±2分之根号2
则易证MF1=M点到右准线距离乘以离心率根号2,MF2=M点到左准线距离乘以离心率根号2
【(X — 二分之根号2)*根号2】*【(X + 二分之根号2)*根号2】=4分之5
解得X的平方=8分之9 带入解得Y的平方=8分之1
所以抛物线方程为 Y的平方=12分之根号2乘以X
我来回答
类似推荐
请使用1024x768 IE6.0或更高版本浏览器浏览本站点,以保证最佳阅读效果。本页提供作业小助手,一起搜作业以及作业好帮手最新版!
版权所有 CopyRight © 2012-2024 作业小助手 All Rights Reserved. 手机版