若椭圆X2/a2+Y2/b2=1上存在一点M,它到左焦点的距离是它到右准线距离的2倍,则椭圆离心率的最小值为?

若椭圆X2/a2+Y2/b2=1上存在一点M,它到左焦点的距离是它到右准线距离的2倍,则椭圆离心率的最小值为?
我是这么做的,设他到左焦点的距离是x,a+c
答案(√17-3)/2
打错了,a-c
数学人气:829 ℃时间:2019-10-24 10:36:01
优质解答
其实,简单点,既然要存在这样的点,使得此点到左焦点的距离等于此点到右准线的距离的2倍,当这个点向右移动时,MF1【F1是左焦点】在增加,而此时,M到右准线的距离在减小,既然要存在,那就只要最大时满足即可.即当点M到右端点时满足2倍关系即可.
则:(a+c)/[(a²/c)-a]≥2就可以了
a+c≥2[a²/c-a]
ac+c²≥2a²-2ac
c²+3ac-2a²≥0 ======>>>> 两边除以a²
e²+3e-2≥0
e≤(-3-√17)/2【舍去】或e≥(-3+√17)/2
则:(-3+√17)/2≤e
我来回答
类似推荐
请使用1024x768 IE6.0或更高版本浏览器浏览本站点,以保证最佳阅读效果。本页提供作业小助手,一起搜作业以及作业好帮手最新版!
版权所有 CopyRight © 2012-2024 作业小助手 All Rights Reserved. 手机版